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Abstract: China has made great efforts to monitor and control air pollution in the past decade. 11 

Comprehensive characterization and understanding of pollutants in three-dimension (3-D) are, 12 

however, still lacking. Here, we used data from an observation network consisting of 13 aerosol 13 

lidars and more than 1000 ground observation stations, combined with a data assimilation 14 

technique, to conduct a comprehensive analysis of an extreme heavy aerosol pollution (HAP) 15 

over the North China Plain (NCP) from November–December 2017. During the studied period, 16 

the maximum hourly mass concentration of surface PM2.5 reached ~390 μg·m-3. After 17 

assimilation, the correlation between model results and the independent observation sub-18 

dataset was ~50% higher than the that without the assimilation, and the root mean square error 19 

was reduced by ~40%. From pollution development to dissipation, we divided the HAP in the 20 

NCP (especially in Beijing) into four phases—an early phase (EP), a transport phase (TP), an 21 

accumulation phase (AP), and a removal phase (RP). We then analyzed the evolutionary 22 

characteristics of PM2.5 concentration during different phases on the surface and in 3-D space. 23 

We found that the particles were mainly transported from south to north at a height of 1-2 km 24 

(during EP and RP) and near the surface (during TP and AP). The amounts of PM2.5 advected 25 

into Beijing with the maximum transport flux intensity (TFI) were through the pathways in the 26 

relative order of the southwest > southeast > east pathways. The dissipation of PM2.5 in the RP 27 

stage (with negative TFI) was mainly from north to south, with an average transport height of 28 

~1 km above the surface. Our results quantified the multi-dimensional distribution and 29 

evolution of PM2.5 concentration over the NCP, which may help policymakers develop efficient 30 

air pollution control strategies. 31 
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1 Introduction 1 

Frequent heavy air pollution has exerted significant impacts on air visibility, climate, 2 

human health, and other environmental concerns (Gao et al., 2017a; Pokharel et al., 2019; Su 3 

et al., 2020). As a developing country with the largest population in the world, China’s air 4 

quality has exhibited an obvious improvement trend in recent years (Cao et al., 2017; Zhang 5 

and Cao, 2015). Regional air pollution in China is still serious, however, especially the heavy 6 

aerosol pollution (HAP) caused by fine particulate matter (PM2.5) in winter, which has attracted 7 

attention worldwide (Cheng et al., 2016; Li et al., 2017b; Zheng et al., 2015; Zheng et al., 2019). 8 

Therefore, providing a reliable distribution of the PM2.5 concentration of HAP, especially at 9 

any time and at any height in a given region, is particularly important in the quest of the public 10 

to avoid health problems and to provide government policy makers with help in designing 11 

effective controls (Hu et al., 2015). 12 

Compared with other air pollutants (e.g., ozone and nitrogen dioxide), PM2.5 has a longer 13 

atmospheric lifetime (3–5 days), during which it can be transported vertically to great heights 14 

and horizontally hundreds of kilometers (Wang et al., 2017; Zhang et al., 2014), depending on 15 

the meteorological conditions (e.g., relative humidity and precipitation) and chemical 16 

composition (Yang et al., 2017). Previous study demonstrated that regional transport plays an 17 

important role for pollution formation in major cities of China, e.g., transport contributes over 18 

50% of the PM2.5 mass concentration in Beijing city, Shanghai city, Hangzhou city, Guangzhou 19 

city, Hong Kong and Chengdu city during the relatively polluted period (Sun et al., 2017). 20 

From 2005–2010, annually, about 35.5% (32.8 μg·m-3) of the PM2.5 in Beijing was attributed 21 

to regional transport from the North China Plain (NCP), within which  up to 60.4% (64.3 μg·m-22 
3) from southerly and westerly air flows (Wang et al., 2015). Since the 2013 implementation 23 

of the most stringent clean air policy in China, the control of local pollution sources has led to 24 

the rapid reduction of total PM2.5 concentration (Zhang et al., 2019c). It should be noted, 25 

however, that the local contributions, intra-regional transport, and inter-regional transport 26 

accounted for 47% (12.7 μg·m-3), 25% (6.6 μg·m-3), and 28% (7.6 μg·m-3), respectively, of the 27 

total PM2.5 for the Beijing-Tianjin-Hebei (BTH) region from 2014–2017, with the 2017 28 

contribution of regional transport to the BTH concentration rate ranging from 32.5–68.4% 29 

(Dong et al., 2020). 30 

Previous studies have shown that it is difficult to use surface observations to characterize 31 

the impact of upper-level pollutants in the atmosphere (Huang et al., 2018b), which is affected 32 

by local emissions, regional transport, meteorological conditions, geographical factors etc. 33 
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(Tao et al., 2020). Therefore, understanding the key processes that drive the dynamic temporal 1 

and spatial evolutionary characteristics of pollutants on the NCP is essential for revealing the 2 

source and transport of aerosols, which has different radiative forcing at different heights 3 

(Kumar et al., 2017). Actually, stereo-monitoring devices and technologies, such as lidar (Chen 4 

et al., 2019b; Fan et al., 2019; Sheng et al., 2019), MAX-DOAS (Hong et al., 2018; Zhang et 5 

al., 2020), and satellite remote sensing (Pang et al., 2018; Schwartz et al., 2012; Zhang et al., 6 

2019a), can reveal the vertical distribution of pollutants at different heights (Heese et al., 2017; 7 

Tian et al., 2017). Due to the limited spatial and temporal observations, however, it is 8 

impossible to provide physical and chemical properties in the atmosphere at any time period 9 

and on any path, which makes it difficult to directly reveal the formation and source of pollution. 10 

On the other hand, although the distribution of pollutants can be simulated by air quality 11 

models (Huang et al., 2018a; Zhang et al., 2008), large uncertainties remain, mainly from the 12 

influence of emission inventory, meteorological fields, and some hypothetical conditions 13 

(Chen et al., 2017; Huang et al., 2016; Xu et al., 2016). Fortunately, the above observed data 14 

and the results of the model can be fused using data assimilation techniques, which can correct 15 

the model simulation results via the observed data (Ma et al., 2019; Wang et al., 2013). 16 

Research has shown that mainstream data assimilation (DA) technologies, including 3DVAR 17 

(Jiang et al., 2013; Ma et al., 2018), 4DVAR (Yumimoto et al., 2008), and EnKF (Chen et al., 18 

2019a), can be used to assimilate observation data from the surface, remote sensing data (such 19 

as AOD) from satellites, and vertical profile data from lidar, all of which can be used to improve 20 

the performance of the model, including the simulation of PM2.5 and PM10. 21 

In this study, we analyzed the observation data from a vertical observation network 22 

consisting of 13 lidars and surface observation stations during an extreme pollution event in 23 

eastern China, especially in the NCP. Next, all of the data were utilized by the Gridpoint 24 

Statistical Interpolation (GSI) three-dimensional (3-D) variational (3DVAR) data assimilation 25 

system to revise the PM2.5 results from the WRF-Chem simulation (Pagowski et al., 2014). 26 

Finally, the multi-dimensional evolutionary characteristics of PM2.5 at the surface and in the 27 

vertical layer, as well as the 3-D distribution, were analyzed in detail. Although data 28 

assimilation has been applied in China using surface observation network data (Gao et al., 29 

2017b), AOD (Liu et al., 2011; Saide et al., 2013; Saide et al., 2014; Schwartz et al., 2012), 30 

and lidar data (Cheng et al., 2019), to our knowledge, this is the first attempt in China to apply 31 

lidar network data to assimilation technology, from which the high-precision 3-D distribution 32 

of pollutants can be provided, thus supplying effective data support for clarifying the formation 33 

mechanism of pollutants (Zheng et al., 2017). 34 
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2 Measurements and methods 1 

2.1 Lidar observation network 2 

The vertical aerosol observation network of the NCP was composed of 13 aerosol lidar 3 

monitoring stations (Fig. 1), covering four main transport channels of Beijing pollutants, 4 

including the southwestern transport path of Baoding City (BD), Shijiazhuang City (SJZ), 5 

Xingtai City (XT), Handan City (HD), Xinxiang City (XX), and Yangquan City (YQ); the 6 

southern transport path of Dezhou City (DZ) and Jining City (JN); the southeastern transport 7 

path of Langfang City (LF), Cangzhou City (CZ), and Zibo City (ZB); the eastern transport 8 

path of Tianjin City (TJ); and a lidar in the urban area of Beijing (BJ). 9 

 10 
Figure 1. © Google maps of (a) China with the studied cities and (b) the North China Plain with all the 11 
lidar stations. The data in brackets are the maximum PM2.5 concentrations (μg·m-3) at the surface during 12 
the observation period. (c) Two-nested WRF-Chem modeling domains and (d) topographic elevation 13 
data in d02. The black arrows in (b, d) from left to right show that the main pollution pathways of 14 
Beijing come from the four directions of southwest, south, southeast, and east. 15 
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The lidar system was developed by the Anhui Institute of Optics and Fine Mechanics 1 

(AIOFM), Chinese Academy of Sciences (CAS), and was used for the long-term continuous 2 

observation of aerosol vertical distribution. The lidar system adopted the Nd: YAG laser, which 3 

emits a 532-nm wavelength, with 30-mJ single-pulse energy and 10–30-Hz pulse repetition 4 

frequency. The vertical resolution is 7.5 m, with a time resolution of 3–10 min. The detection 5 

blind area is 0.1 km; more specific technical details can be found in other literature (Xiang et 6 

al., 2019). The vertical distribution of the aerosol extinction coefficient was retrieved using the 7 

Fernald method (Fernald, 1984), which is more suitable for vertical detection and more 8 

accurate than the Collis (Collis et al., 1964) and Klett (Klett, 1981) methods (Lu et al., 2015). 9 

Furthermore, combining the extinction coefficient with the PM2.5 in-situ surface observations, 10 

the vertical distribution of the PM2.5 mass concentration in the boundary layer was obtained 11 

using the empirical formula fitting method, which has proven to be reliable and highly accurate; 12 

the specific technical details can be found in other literature (Lv et al., 2017a; Lv et al., 2017b; 13 

Tao et al., 2016). In addition, an image recognition algorithm was used to evaluate the height 14 

of the atmospheric boundary layer (Barrera et al., 2019; Xiang et al., 2019). 15 

2.2 WRF-Chem model configurations 16 

The WRF-Chem chemical transport model was used to investigate the particulate 17 

concentrations and meteorological parameters in the study area and was configured with nested 18 

domains consisting of 100 × 100 (36 km) and 103 × 103 (12 km) grids (Figs. 1c and 1d). The 19 

domain had 41 vertical layers from the surface to 50 hPa. To better simulate the conditions 20 

within the boundary layer, the resolution of the boundary layer was increased, and 20 layers 21 

were set in the range of 0–2 km. The initial and boundary meteorological conditions were 22 

derived from the 6-h National Centers for Environmental Prediction Final Analysis data with 23 

1° × 1° spatial resolution. The inventory of anthropogenic emissions for 2016 was obtained 24 

from the Multi-resolution Emission Inventory for China (MEIC) data with 0.25° × 0.25° 25 

resolution (Zhou et al., 2017). Terrestrial biogenic emissions were estimated using the Model 26 

of Emissions of Gases and Aerosols from Nature (MEGAN) model (Chatani et al., 2011). The 27 

gas-phase chemistry module CBM-Z and the Model for Simulating Aerosol Interactions and 28 

Chemistry (MOSAIC) aerosol module were used in this simulation. Detailed information 29 

concerning the model configuration is provided in Table S1. The model runs from November 30 

20, 2017–December 9, 2017, and the results from November 25–December 9, 2017 were used 31 

for the analysis in Section 3. 32 

2.3 GSI 3DVAR DA system 33 
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The GSI DA (Gridpoint Statistical Interpolation Data Assimilation) system provides 1 

3DVAR analysis by minimizing the cost function as shown below (Gao et al., 2017b): 2 

𝐽(𝑥) = (𝑥 − 𝑥!)"𝐵#$(𝑥 − 𝑥!) + )𝑦 − 𝐻(𝑥),
"𝑅#$)𝑦 − 𝐻(𝑥),  (1) 3 

In this equation, x is the analysis vector, xb denotes the background vector, y is an observation 4 

vector, B represents the background error covariance matrix, R represents the observation error 5 

covariance matrix, and H is the observation operator used to transform model grid point values 6 

to observed variables, which was performed via interpolation in our research. The background 7 

error covariance matrix was calculated using the National Meteorological Center (NMC) 8 

method (Parrish and Derber, 1992; Saide et al., 2013), which simulated the difference of results 9 

at the same time (November 25, 2017) with two different starting times (November 20, 2017 10 

and November 21, 2017, respectively). The 1-hour assimilated window data included 13 11 

groups (see Fig. 1 for site distribution) of PM2.5 vertical profiles retrieved from lidar, and the 12 

surface PM2.5 data from hundreds of surface monitoring stations (see Fig. 5 for site distribution) 13 

from the China Environmental Monitoring Center. The observation errors of PM2.5 ground and 14 

its vertical distribution (through the ground PM2.5 fitting method in Section 2.1) originated 15 

from measurement errors and representative errors. The measurement error was computed 16 

using 𝜀% = 1.5 + 0.0075 ∗ 𝑜𝑏𝑠 (Pagowski et al., 2014), where obs indicates observed values. 17 

The representative error was computed using 𝜀& = 𝛾𝜀%9Δ𝑥/𝐿 (Elbern et al., 2007), where 𝛾 is 18 

the adjustable scale factor (we used the value of 0.5 recommended by the GSI system), Δ𝑥 is 19 

the model grid resolution (we selected 12 km of domain 2), and L is the influencing radius (we 20 

used 60 km). 21 

3 Results and discussion 22 

3.1 Evaluation of assimilation performance using vertical PM2.5 data 23 

In order to evaluate the improvement of model simulation performance from data 24 

assimilation using lidar vertical profile data and surface station data, considering the sharp 25 

decline of PM2.5 value at 1km height (Fig. 6), only the non-assimilation and assimilation results 26 

at the surface, 0.2 km, 0.5 km, and 1 km were compared, as shown in Fig. 2. These data were 27 

selected from five of the most polluted stations, including the cities of TJ, LF, BD, SJZ, and 28 

XT. It should be noted that these observation data were not assimilated, which means that the 29 

following comparisons are independent (Bocquet et al., 2015). Obviously, the data assimilation 30 

used can greatly improve the simulation accuracy. Compared with the observation data at 31 

different heights, the simulation results of PM2.5 levels under the condition of non-assimilation 32 

were higher (Figs. 2 a–d), the root-mean-square error (RMSE) was 52.14 ± 20.27 μg·m-3, and 33 

https://doi.org/10.5194/acp-2020-1273
Preprint. Discussion started: 8 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 7 

the correlation coefficient was only 0.56 ± 0.15. Correspondingly, the results of PM2.5 1 

simulated with assimilation were closer to the observed values (Figs. 2 e–h), the RMSE was 2 

33.07 ± 14.69 μg·m-3, which represents a reduction of about 40% in simulation error after 3 

assimilation. The correlation coefficient was 0.81 ± 0.10, demonstrating that the simulation 4 

accuracy was improved by about 50% after assimilation. 5 

 6 
Figure 2. PM2.5 mass concentration comparison results from lidar at different heights (b–d, f–h) and 7 
surface observations (a, e) with non-assimilation simulations (a–d) and assimilation simulations (e–h). 8 

In addition, compared with the simulation with assimilation (Fig. 5 in Section 3.3), the 9 

results without assimilation were significantly higher than the observed values (Fig. S1), 10 

especially during the pollution period (Figs. S1d, S1e), which may be due to the simulation 11 

error caused by the model (Zhang et al., 2016). Meanwhile, the comparison of the three-12 

dimensional results (Fig. 7 in Section 3.5 and Fig S2) further reveals that the simulation results 13 

of upper air PM2.5 may also overestimate the actual values, which demonstrates the importance 14 

of data assimilation in capturing the three-dimensional structure of pollution. 15 

3.2 The four phases from aerosol pollution development to dissipation 16 

Joint observations and analyses have been widely performed in an effort to reveal the 17 

heavy aerosol pollution (HAP) in the NCP region (Li et al., 2016; Zhang et al., 2018). The key 18 

processes of a HAP event, from aerosol pollution development to dissipation, usually include 19 
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an early phase (EP), a transport phase (TP), an accumulation phase (AP), and a removal phase 1 

(RP) (Yuan et al., 2019; Zhong et al., 2017), classifications that are based on the increase and 2 

decrease of PM2.5 mass concentration in Beijing (BJ) caused by changes in meteorological 3 

conditions. Here, the curves in Fig. 3 shows the temporal evolution of PM2.5 mass concentration 4 

monitored at the surface in different cities on the NCP from November 25–December 9, 2017, 5 

while the superimposed colors represent the time-varying profiles of the simulated wind fields 6 

in BJ, Baoding (BD), Dezhou (DZ), and Langfang (LF), respectively. Overall, PM2.5 with high 7 

concentrations was usually associated with pronounced southerly winds (S in Fig. 3) or 8 

southwesterly winds (SW in Fig. 3), while the PM2.5 concentrations decreased significantly 9 

under the prevailing northerly winds (including the wind directions of N, NW, and NE in Fig. 10 

3). 11 

 12 
Figure 3. Surface PM2.5 observations from different cities: (a) Beijing (including Tianjin) and its (b) 13 
southwest cities, (c) southeast cities, and (d) east cities for the period November 25–December 9, 2017. 14 
Superimposed colors represent the time-varying profiles of the simulated wind fields in Beijing, 15 
Baoding, Dezhou, and Langfang, respectively. 16 
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Furthermore, in order to characterize the evolution of PM2.5 during different pollution 1 

phases, the period from November 29–December 5 was selected as a typical extreme HAP 2 

event covering the four pollution phases. This extreme pollution event lasted more than 4 days 3 

and featured a regional transport process. During the EP (November 29–noon November 30; 4 

episode 1 in Fig. 3), the air quality in BJ and its surrounding areas such as Tianjin (TJ) was 5 

relatively good, with an average PM2.5 value of ~15 μg·m-3, while slight pollution occurred to 6 

the southwest of BJ, including BD, Shijiazhuang (SJZ), Xintai (XT), and Handan (HD), with 7 

an average value of ~50 μg·m-3. 8 

During the TP (approximately the morning of December 2; episode 2 in Fig. 3), the 9 

variation of PM2.5 concentration was more sensitive and responded rapidly to the wind shift 10 

from northerly to southerly, causing the PM2.5 concentration in Beijing to increase quickly from 11 

~30 μg·m-3 to ~150 μg·m-3, while southwest of Beijing (e.g., BD, SJZ, XT, and HD) the PM2.5 12 

concentration increased rapidly to ~200 μg·m-3. Research has revealed that the pollutant 13 

transport south of Beijing, especially in the southwest areas (the Taihang Mountains), is the 14 

most important contribution source of Beijing pollutants (Zhao et al., 2020). During the AP 15 

(approximately December 3; episode 3 in Fig. 3), diffusion of the pollutants was difficult due 16 

to the occurrence of a surface temperature inversion in Beijing (Fig. 4) (Wang et al., 2019), 17 

which caused the maximum concentration of PM2.5 in Beijing to reach ~250 μg·m-3. 18 

Meanwhile, the PM2.5 concentrations in TJ, LF, BD, and SJZ reached maximum values of ~270, 19 

250, 320, and 390 μg·m-3, respectively. Conversely, the pollution levels in Shanghai (SH), 20 

Hefei (HF), and Wuhan (WH) in the southernmost section of the NCP were relatively low, 21 

with average values < ~60 μg·m-3. 22 

During the RP (approximately December 5; episode 4 in Fig. 3), the wind direction 23 

shifted from southwest to north, transporting the relatively clean air in the north to the south, 24 

and thereby causing the pollutant concentrations in Beijing to decrease rapidly. In just 9 hours, 25 

the air quality improved from heavy pollution to excellent, and the PM2.5 concentrations in the 26 

NCP also decreased significantly. Finally, by noon on December 4, the pollutant concentrations 27 

in the NCP had reached a low level, with an average value of ~40 μg·m-3. In contrast, due to 28 

the continuous southward advection of pollutants, serious pollution occurred in SH, HF, and 29 

WH, where the PM2.5 concentrations reached maximum values of ~210, 310, and 280 μg·m-3, 30 

respectively. These findings are also consistent with the results of previous studies on the 31 

regional transport of regional pollutants to the Yangtze River Delta (Hua et al., 2015), which 32 

showed them to be due to the continuous southward flow of northwest and northeast winds. 33 
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 1 
Figure 4. Time series of vertical temperatures (a, c, e, g) and temperature gradients (b, d, f, h) from 2 
Beijing (a, b), Baoding (c, d), Dezhou (e, f), and Langfang (g, h) simulated by the WRF-Chem model. 3 

3.3 Spatial distribution of PM2.5 concentration in the surface layer 4 

Additionally, in order to analyze the pollution characteristics of the NCP, the spatial 5 

distribution results of PM2.5 after data assimilation were plotted in Fig. 5 for all phases. The 6 

high concentrations of PM2.5 in BJ were recorded during the TP, AP, and beginning of the RP, 7 

while the PM2.5 concentrations at other times were lower. Moreover, during the EP, only the 8 

eastern cities of Shanxi (SX) Province experienced moderate pollution levels (Fig. 5a). During 9 

the TP, the pollutants in the south-central NCP were transported to the north of the NCP (Figs. 10 

5b and c) as a result of the southwesterly wind field, and under the superposition of the local 11 

pollutant emissions from each city (Li et al., 2017a), the cities on the windward side of the 12 

Taihang Mountains (e.g., HD, SJZ, and BD) quickly developed varying levels of heavy 13 

pollution. In addition, during the AP, due to the large-scale inversion (Figs. 4b, d, f, h) caused 14 

by the rapid temperature rise (Figs. 4a, c, e, g) of the NCP region at upper levels, the 15 

atmospheric stratification was stable, causing the pollutant loading on the NCP (including BJ, 16 

BD, SJZ, HD, LF, CZ, and elsewhere) to increase (Fig. 5d), nearly reaching their pollution 17 

maxima (Fig. 3). Meanwhile, during the RP, affected by the cold air at upper levels (Figs. 4a, 18 
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c, e, g) from the northwest and the shift in wind direction over the NCP from southwest to 1 

north, the pollution severity gradually eased from north to south (Fig. 5e), with the air quality 2 

in the northern part of the region improving significantly (Fig. 5f). 3 

 4 
Figure 5. Spatial distribution of PM2.5 in the surface layer during different phases after assimilation. 5 
The black arrows indicate the wind direction. The circles represent the in-situ surface observations. 6 

3.4 Vertical distribution of aerosols observed by the lidar network 7 

In order to quantify the characteristic vertical distribution of aerosols, the observed 8 

aerosol extinction coefficients from the 13 lidar stations in the NCP were plotted, as shown in 9 

Fig. 6. These results revealed that on November 29, the aerosol concentration at the surface 10 

was relatively low, although pollutant transport at heights of 1–2 km (see Figs. 8a, e) occurred 11 

at six stations (BD, SJZ, YQ, XT, HD, and XX) on the windward side of the Taihang Mountains. 12 

The upper air transport of pollutants continued until December 1, at which it merged with the 13 

surface flow. Contrary to this, the pollutant transport from north to south occurred at a height 14 

of 1 km during the RP (e.g., Figs. 6b, d–g). In addition, the atmospheric boundary layer height 15 

(ABLH) reached its highest value of the observation period from November 29 to 30, averaging 16 

more than 1.5 km. The ABLH began to decrease on December 1, averaging approximately 1 17 
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km on that day. The lowest value of the ABLH occurred on December 2–3, when its average 1 

dropped to less than 0.5 km, making it difficult for pollutants to diffuse and causing heavy 2 

pollution in the NCP (Li et al., 2017c). Fortunately, on December 4, the atmospheric boundary 3 

layer gradually lifted, which was conducive to the diffusion of pollutants. 4 

 5 
Figure 6. Time series of vertical distributions of the aerosol extinction coefficient observed on the 6 
North China Plain from November 29–December 5, 2017. The white dashed lines represent the 7 
approximate atmospheric boundary layer height. 8 

3.5 Dynamic 3-D evolution of the PM2.5 concentrations 9 

Figure 7 presents the 3-D distribution of PM2.5 after assimilation, which clearly shows 10 

the generation, dissipation, transport, and diffusion characteristics of pollutants in the 11 

atmosphere. The tops of the boxes in the figure depict the wind speeds 10 m above the surface. 12 

During the EP, the high-concentration pollutants only occurred in the upper air within ~1 km 13 

of the surface in SX Province (e.g., YQ). During the TP, the high-concentration pollutants were 14 

mainly found on the windward side of the Taihang Mountains (southwest pathway), and the 15 

loading height of PM2.5 was < 1 km, which is illustrated in Fig. 8. During the AP, the average 16 

concentration of pollutants > 200 μg·m-3 mainly occurred near the surface. Meanwhile, the 17 
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pollutants with low concentrations at upper levels could be transported to the Bohai Sea. 1 

During the RP, high-concentration pollutants > 100 μg·m-3 simultaneously occurred over the 2 

Bohai Sea and the Yellow Sea. 3 

 4 
Figure 7. Three-dimensional distribution of PM2.5 during different phases after assimilation. Colors 5 
within the boxes depict the PM2.5 concentrations. The color-coded arrows represent the wind direction 6 
and speed at 1 km. On the tops of the boxes, the spatial distributions of wind speed at 10 m are plotted. 7 

3.6 Quantification of regional transport of PM2.5 8 

To evaluate the variation of pollutants along different transport pathways at different 9 

stages, we plotted the vertical profile of the PM2.5 cross-section along the main pollution 10 

pathways of Beijing come from the four directions of southwest, south, southeast, and east (see 11 

Figs. 1b, d). As shown in Fig.8, at XX and XT (located at the start of the southwest transport 12 

pathway, Fig. 8a), the PM2.5 concentration is more than  200 μg·m-3 at a height of 1 km (Fig. 13 

8a), and the surface PM2.5 concentraiton at JN (located in the south pathway) also exceeds 200 14 
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μg·m-3 (Fig. 8b). These high concentrations of pollutants were transported to SJZ, BD, LF, BJ, 1 

and other cities via southwest winds (Figs. 8e, f, g). At the same time, vertical downdrafts 2 

reduced the height of loading of aersol layer to ~0.6 km (Fig. 8e). Different from the southern 3 

(including southwest, south, and southeast) transport pathways, the pollutants in TJ were 4 

mainly from BJ outflow in all stages of the eastern transport pathways (Figs. 8d, h, l, p). In 5 

addition, wind direction inconsistencies at the origin (XX, JN, and ZB) and target location 6 

(Beijing) of the transport pathways occurred at the beginning of the removal phase (Figs. 8i–7 

k), which may have been due to the southward delay of the northerly air flow. 8 

 9 
Figure 8. Vertical profiles of PM2.5 cross-sections with wind vectors along the transport pathways, 10 
including southwest (first column), south (second column), southeast (third column), and east (fourth 11 
column). The first row (00:00 December 2, 2017) represents the transport stage, the second row (10:00 12 
December 2, 2017) represents the accumulation stage, the third row (00:00, December 3, 2017) and the 13 
fourth row (14:00, December 4, 2017) represent the removal stage. 14 
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To investigate the vertical variation of PM2.5 inflow or outflow at different heights and 1 

determine the height at which the main transport occurred (Zhang et al., 2019b), we plotted the 2 

vertical distribution of PM2.5 transport flux in different directions (Fig. 9). Here the PM2.5 3 

transport flux is defined as the product of PM2.5 mass concentration (µg m-3), wind speed (m s-4 
1), and wind direction projection in the current pathway (Xiang et al., 2020). The southwest, 5 

southeast, and east pathways in Fig. 9 were represented by BD, LF, and TJ, respectively, which 6 

are the three lidar stations closest to BJ (Fig. 1). TF > 0 indicates that the pollutants were 7 

imported to Beijing, while TF < 0 indicates that the pollutants were exported from Beijing. The 8 

results revealed that below the height of 1.5 km, the order of the maximum values of imported 9 

pollutants to Beijing direction was southwest pathway (1122.8 µg m-2 s -1) > southeast pathway 10 

(423.6 µg m-2 s -1) > east pathway (278.3 µg m-2 s -1), while the exported pollutants from Beijing 11 

direction was southwest pathway (-1571.4 µg m-2 s -1) > east pathway (-877.7 µg m-2 s -1)> 12 

southeast pathway (-772.4 µg m-2 s -1). Compared with the PM2.5 transport flux on the ground 13 

surface, the relatively high value (~ 200 µg m-2 s -1) in the southwest pathway (Fig. 9a) occurred 14 

on November 29 and early morning on December 4, while the relatively extreme value (~ -400 15 

µg m-2 s -1) on the east pathway (Fig. 9c) was recorded at the night of December 2. 16 

 17 
Figure 9. Time series of PM2.5 transport flux from different transport pathways. The corresponding 18 
directions of the southwest, southeast, and east pathways are shown in Fig. 1. 19 
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To further obtain insights into the total transport characteristics in the target area (BJ) 1 

and its surrounding area (BD, LF, and TJ) during different evolutionary stages, the time series 2 

of the PM2.5 transport flux intensity (TFI) was shown in Fig. 10, which was calculated by 3 

integrating the PM2.5 transport flux within the height range of 1.5 km. The TFI of PM2.5 further 4 

reveals that pollutants imported into the Beijing area with a maximum PM2.5 TFI of ~4.6´105 5 

μg·m-1·s-1 were transported mainly via the southwest pathway during the TP, while the extreme 6 

TFI of pollutants exported from Beijing via the east pathway was approximately -1.4´105 7 

μg·m-1·s-1. In addition, during the RP, the pollutants from Beijing were exported to the 8 

southwest and southeast, with extreme values of approximately -1.03´106 and -4.3´105 μg·m-9 
1·s-1, respectively. On the contrary, the absolute value of TFI on the southwest pathway was < 10 

~1.0´104 μg·m-1·s-1 during the EP (Fig. 10), which indicates that there was no significant 11 

inflow or outflow of pollutants. However, this reason was mainly due to the offsetting of the 12 

inflow of pollutants in the upper-air and the outflow of pollutants near the ground (Fig. 9a). 13 

This special phenomenon also demonstrates that the study of vertical distribution of pollutants 14 

has great significance, which can better explain the transport characteristics (Zhang et al., 15 

2019b). 16 

 17 
Figure 10. Time series of PM2.5 transport flux intensity from different transport pathways. The 18 
corresponding directions of the southwest, southeast, and east pathways are shown in Fig. 1. 19 

4 Conclusions 20 

Accurate quantification of the distribution of particulate matter in the atmosphere is a 21 

key requirement for predicting air quality and estimating atmospheric environmental capacity 22 

from atmospheric observations. We utilized a vertical observation network composed of 13 23 

aerosol lidars, combined with data assimilation technology, to improve the simulation accuracy 24 
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of PM2.5, and further analyzed the multi-dimensional evolutionary characteristics of pollutants 1 

in the surface layer, vertical layer, and 3-D space, thereby providing effective data support for 2 

clarifying the spatial transport characteristics of heavy pollution. 3 

We found that the average height of the atmospheric boundary layer was < 0.5 km 4 

during the HAP period. We further demonstrated that the transport of pollutants in the NCP 5 

region was mainly via three pathways: southwest, southeast, and east. During the TP, the PM2.5 6 

advected into Beijing with a maximum transport flux intensity (TFI) of ~4.6´105 μg·m-1·s-1 7 

was mainly via the southwest pathway, while the polluted air mass in the RP dissipated from 8 

Beijing via the southwest and southeast pathways, with extreme PM2.5 TFI values of 9 

approximately -1.03´106 and -4.3´105 μg·m-1·s-1, respectively. In addition, the transport of 10 

regional pollutants to the Yangtze River Delta was due to the continuous southward flow of 11 

northwest and northeast winds. Our results directly revealed that pollutants in the North China 12 

Plain can be transported to the Yellow Sea and the Bohai Sea, providing a dataset for a further 13 

in-depth study of the mechanism of air pollution in the coastal areas of eastern China. This 14 

study also captured the regional transport of air pollutants stretching over 1000 km, proving 15 

the necessity and importance of the joint prevention and control of regional air pollution. 16 
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